
© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial

UML Statemachine

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Tutorial Actifsource Tutorial – State Machine
Required Time 70 Minutes

Prerequisites Actifsource Tutorial – Installing Actifsource

 Actifsource Tutorial – Simple Service

 Actifsource Tutorial – Domain Diagram Type

 Actifsource Tutorial – Domain Diagram Type II

Goal Create UML State Machines using the built-in Actifsource solution

Topics covered Create UML State Machines with states, superstates, history states, (entry, exit,
state) actions and transition guards

Notation To do
 Information

 Bold: Terms from actifsource or other technologies and tools

 Bold underlined: actifsource Resources

 Underlined: User Resources

 UnderlinedItalics: Resource Functions

 Monospaced: User input

 Italics: Important terms in current situation

Disclaimer The authors do not accept any liability arising out of the application or use of any
information or equipment described herein. The information contained within this
document is by its very nature incomplete. Therefore, the authors accept no
responsibility for the precise accuracy of the documentation contained herein. It
should be used rather as a guide and starting point.

Contact actifsource GmbH
Täfernstrasse 37
5405 Baden-Dättwil
Switzerland
www.actifsource.com

Trademark actifsource is a registered trademark of actifsource GmbH in Switzerland, the EU,
USA, and China. Other names appearing on the site may be trademarks of their
respective owners.

Compatibility Created with actifsource Version 6.8.1

http://www.actifsource.com/

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Overview 3

 Design an UML state machine for a simple coin machine process and create a state diagram that represents the

UML state machine:

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part I: 4

Preparation

 Create a new Actifsource project with the name com.actifsource.umlstatemachine

 Change to the tab Built-in Dependencies in the New Actifsource Project dialog

 Add the built-in dependency UML (which makes all resource needed to build and represent UML state machines

available in our new project).

 Close both dialogs by clicking OK and Finish

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part II: 5

Design an UML State Machine

 Create a new resource of type ch.actifsource.solution.uml.statediagram.generic.simple.Statemachine

 Enter CoinMachineStateMachine as the name of the new resource

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 6

 Open the state diagram of CoinMachineStateMachine, StateDiagram_1, in the Domain Diagram Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 7

First, we create two superstates, called NormalMode and DiagnosticMode:

 Select SuperState from the Palette and left-click in the Diagram Editor to create a superstate

 Enter NormalMode as the name of the new SuperState in the New Resource Wizard

 In the same way, create a SuperState called DiagnosticMode

 Select Start from the palette and right-click in the Diagram Editor to create a start state (i.e., the default or

initial state of the state machine)

 In the Select mode, you can now re-size and re-position the states as usual in the Diagram Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 8

 Select Relation from the Palette and insert a relation from the start state symbol to the superstate NormalMode

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 9

Now, we create nested states to define the behavior in the NormalMode:

 Select State from the Palette and left-click in the lower section of the NormalMode state to create a nested

state in the superstate NormalMode

 Enter the name Locked as name of the State in the New Resource Wizard

 In the same way create the two nested states Locked and Empty in the NormalMode and the two nested states

TestLock and TestCoin in the superstate DiagnosticMode

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 10

 Select Start from the Palette and left-click in the lower section of the NormalMode state (see above) to create a

default or start state

 As before, select Relation from the Palette and create a relation from the start state to the state Locked

 In the same way, create a start state in the DiagnosticMode and create a relation from this start state to the

state TestLock

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 11

Next, we define the state transitions and events:

 Select Relation from the Palette and create a relation from the state Locked to the state Unlocked

 With Control+Click on the GUID of the newly created relation, you can now open the transition in the Resource

Editor

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 12

 In the Resource Editor, create a new Event for the transition from state Locked to Unlocked

 Give the name Coin to the newly created event

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 13

 Switch to the open StateDiagram_1 in the Diagram Editor and check that the transition from Locked to

Unlocked is now labeled 'Coin'

 In the same way, create the following transition and events: Unlocked-(DispenserSignal)->Locked, Empty-

(Refilled)->Locked, Empty-(Coin)->Empty, TestCoin-(DispenserSignal)->TestLock, TestLock-(Coin)->TestCoin

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 14

We want to create a condition that is only true if the machine is non-empty. Thereto, we introduce a variable stockItems

that keeps track of the number of items left in the machine:

 Open CoinMachineStateMachine the Resource Editor

 Add a PrivateVariableField to the CoinMachineStateMachine

 Create a VariableField with name stockItems and with type INTEGER as field

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 15

Next, we add guards to transitions such that the corresponding transitions only "fire" if the guard evaluates to TRUE:

 By Control+Click on the transition Unlocked-(Coin)->Locked, open the transition in the resource editor

 Use the Content Assist to create a new ModelGuardImpl named hasStockItems as guard of the transition (see

above)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 16

 Add a GreaterExpression as booleanExpression to the ModelGuardImpl

 Create an operand1 of type VariableFieldExpression with a fieldRef with the VariableField stockItems as field

 Create an operand2 of type LiteralExpression with value 0

 Close the booleanExpression: Note that the Boolean expression stockItems > 0 is now displayed to represent

the condition of the guard

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 17

Next, we add actions that are executed together with transitions and introduce shared functions which can be used as

actions by multiple transitions:

 Open CoinMachineStateMachine in the Resource Editor

 Create a new SharedFunction called lightOff as sharedFunction to CoinMachineStateMachine

 Create a new ManualFunctionImpl with viewName lightOff as functionImpl to the SharedFunction

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 18

 Add a transitionFunction of type ManualFunctionImpl to the transition Locked->Unlocked (see above)

 In the same way create the following transitionFunctions of type ManualFunctionImpl:

 rejectCoin (Empty->Empty)

 lightOn (TestCoin->TestLock)

 Add a transitionFunction of type SharedFunctionRef to the transition TestLock->TestCoin which uses the

sharedFunction lightOff

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 19

When the event Refilled occurs, the variable stockItems (i.e, the private variable that counts the number of stock items)

should be set to the initial numbers of items:

 Add a transitionFunction of type ModelFunctionImpl to the transition Empty-(Refilled)->Locked

 Add a statement of type Assignment to the ModelFunctionImpl

 Insert a fieldRef with field stockItems

 Add an operand of LiteralExpression with value INITIAL_STOCK_ITEMS

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 20

Each time the machine is unlocked, the number of stock items should be decremented by one:

 Create a new ModelFunctionImpl named decrementStockItems as entryFunction of the state Unlocked

 Add an Assignment as statement with an operand of type DecExpression

 Add an operand of type VariableFieldExpression to the DecExpression

 Add a fieldRef of type FieldRef to the VariableFieldExpression and use stockItems as field

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 21

 Open the StateDiagram_1 in the Diagram Editor and check that all the actions are displayed correctly as shown

above

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 22

We add a transition that is triggered by an event Diagnose from the NormalMode to the DiagnosticMode (i.e., a

technician should be able to switch to this diagnose state from any state in the normal mode). To save the state of the

machine before switching modes, we introduce a history state:

 Add a history state by selecting History from the Palette

 Insert a transition triggered by a new event Return from the DiagnosticMode to the history state

 Create a transition triggered by a new event Diagnose from the NormalMode to the DiagnosticMode

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 23

Since the state of the DiagnosticMode is not saved before returning to the NormalMode, the light should be switched

off when entering the diagnostic mode:

 Open the CoinMachineStateMachine in the Resource Editor

 Add an entryFunction of type SharedFunctionRef to the DiagnosticMode and use lightOff as the

sharedFunction

 The entry function is now displayed when selecting the DiagnosticMode in the Diagram Editor (see above)

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Part III: 24

Generate code from an UML State Machine

Finally, we want to generate code that implements the specified UML state machine:

 Right-click on the project com.actifsource.umlstatemachine in the Project Explorer and select Properties from

the menu

 Select actifsource in the Properties dialog and go to the Target Folder tab

 Click on Add Target Folder, create a new folder called src, select this folder and click OK

 Select the folder src and click on Add BuildConfig and choose the build configuration StateDiagram_C from the

dialog. Close both dialogs by clicking OK

© 2010 actifsource GmbH, Switzerland - all rights reserved.

Design an UML State Machine 25

 Open the folder src and make sure that the two files Statemachine_CoinMachineStateMachine.c and

Statemachine_CoinMachineStateMachine.h have been generated and inspect the generated code

 If the two files have not been generated, check that the option Generate Automatically is active. If not, the

code can also be generated manually as follows: right-click on the project in the Project Explorer and choose

Generate Code from the menu.

© 2010 actifsource GmbH, Switzerland - all rights reserved.

